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Abstract

This study is made to use analytic simulation methods to study and compare different designs for the suspension of
a chair used on a sea-going vessel. This article shows the simulation of several designs and their responses to similar
vessel motions. The mechanical springs and gas springs have a trade-off between comfort and maximum operational
conditions. The active system has the greatest comfort, but offers the least protection in rougher weather. Another
important parameter that are not simulated but have a huge impact is enlarging the stroke (larger stroke means higher
operational range).

Sea-going small and high speed vessels have chairs which
are suspended individually. This suspension is not only to
make the ride more comfortable during nice weather, but is
also meant to prevent injuries when the weather is not so
nice.

The seat can be either suspended by a mechanical or a
gas spring. The springs must also contain some damping,
to dissipate the energy from the movements.

In this article both types and some special types will be
shown and simulated to see how well they perform. The
damping will be kept equal throughout the article, to show
clearly the differences between the designs, and not the in-
fluence of higher or lower damping.

1 The model

To start the study, one general model will be used on which
all simulations are based. A graphic representation of the
model is shown in Figure 1.

The top part is a standard mass-spring-damper model as
often used in theoretical studies. The connection to the
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Figure 1: Graphic representation of the mathematical
model.

world is used to excite the system, similar to how the vessel
will be moving. The forces of the spring and damper are thus
not only dependent on the position and speed of the mass,
but also of the vessel compared to the world. Therefore, the
general equation of motion for the passenger on the seat is
found:

m z̈2 − d (ż1 − ż2) − c (z1 − z2) + 600 = −m g (1)

where the +600 at the spring is the pretension of the spring
when fully extended (600N ≈ 60kg). The other quantities
are shown in Table 1

This leads to the following set of first order differential
equations when the suspension is not end of stroke:

[

ẍ
ẋ

]

=

[

ẋ1

ẋ2

]

=

[

−m g+d (ż1−x1)+c (z1−x2)+600+c 0.1359
m

x1

]

(2)

Unfortunately, it is possible that the suspension hits the
end of stroke position. At that point, the suspension is end
of stroke and the position is fixed to the position of the
vessel. This can lead to high forces and thus needs to be
considered. This means that when z2 − z1 > s and when
z2 − z1 < 0 the non linearity appears, where the impact
force brings the speed back to 0[m/s].

Table 1: Explanation of the quantities
Symbol quantity unit

c Spring stiffness [N/m]
d Damping coefficient [Ns/m]
g Gravitational acceleration 10[m/s2]
m Mass of the passenger + chair 80[kg]
ż1 Velocity of the vessel [m/s]
z1 Position of the vessel w.r.t. [m]

the world
ż2 Velocity of the passenger [m/s]

and chair
z2 Position of the passenger [m]

and chair w.r.t. the world
Stroke of suspension 0.1359[m]
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First the impact force. The impact force is calculated by
setting the work done by the impact (W = Fimpact s) equal
to the kinetic energy (Ekin = 1

2 m v2):

Fimpact s =
1

2
m v2 (3)

Fimpact =
m v2

2 s
(4)

The stroke which can be deformed is assumed to be 1[mm]
in these calculations. A small stroke is required to prevent
the force of going to infinity.

This means that at the end of stroke the position needs
to be forced to the end position (stroke + vessel position z1)
in the simulation. This means that the spring is no longer
acting on the mass while the impact force is acting on the
mass. The differential equation for extended position is:

[

ẍ
ẋ

]

=

[

ẋ1

ẋ2

]

=

[

−0.5∗m (x1−ż1)2

0.001 −m g+d (ż1−x1)

m

x1

]

(5)

For the retracted position the main difference is the di-
rection of the impact force, the mass is now suspended by
the steel contact, which leads to the following differential
equation:

[

ẍ
ẋ

]

=

[

ẋ1

ẋ2

]

=

[

0.5∗m (x1−ż1)2

0.001 +d (ż1−x1)+c (z1−x2)+600+c 0.1359

m

x1

]

(6)

This is the basic model that will be adapted for each
spring damper system. The mass of the passenger and
spring will be adapted to each other, meaning that this will
not be a great influence.

2 Linear Spring Model

A linear spring means that the spring stiffness is constant
over the full stroke. This can be (approximately) achieved
with mechanical springs. the used parameters are shown in
Table 2. Important to know is that this system has under-
damping with these quantities, see [1] for further reading.

The natural frequency is explained in [1], and the natu-
ral frequency of the damped system is 0.95[Hz]. The Bode
diagram for this system is shown in Figure 2.

2.1 Spring pretension adjusted to weight

In this first subsection, the spring will be compressed by
0.05[m] by the weight of the passenger until the spring force
equals the weight of the passenger and the chair.

Table 2: Used quantities for the linear spring
Symbol quantity unit

c Spring stiffness 4000[N/m]
d Damping coefficient 600[Ns/m]
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Figure 2: The Bode diagram of the system with a linear
spring.

2.1.1 Static results

Not only the normal usage case will be shown for the static
results, but also a too heavy passenger and the passenger
suddenly standing up is shown for model verification.

For the static results the position of the vessel is kept
constant at 0[m] in the world. This means that the system
practically becomes a standard mass-spring-damper system,
which is easy to verify.

Normal use During normal use, a passenger and seat
weight of 80[kg] is simulated. The simulation starts at
extended stroke, meaning that the passenger is just sit-
ting down. The results are shown in Figure 3. The even-
tual position is checked using a simple calculation: preten-
sion is 600[N], the weight of seat and passenger is 800[N],
meaning that the compression of the spring should deliver
200[N]. With a spring stiffness of 4000[N/m], the displace-
ment should be 0.05[m]. The stroke of 0.1359[m] minus
the displacement means that the stroke should end up at
0.0859[m], which is equal to the result in the simulation.
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Figure 3: The acceleration, velocity and position for the
static case during normal use (sitting down).
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Figure 4: The acceleration, velocity and position for the
static case for a too heavy passenger sitting down.

Too heavy passenger For the too heavy passenger the
weight of the passenger and seat is increased to 110[kg].
This 1100[N] minus the 600[N] pretension, the spring needs
to deliver an extra 500[N], which means 500/4000=0.125[m].
With the stroke of 0.1359[m] the stroke left is 0.0109[m].
However, due to the dynamics the suspension will hit the
end of stroke position. Due to the short deformation allowed
for the impact, the force and thus the acceleration at that
point will be huge. This is all shown in Figure 4.

Standing up suddenly The same end of stroke position
applies to the stroked out position. This happens for in-
stance when the passenger stands up, and only the weight
of the chair is left. The weight of the passenger is reset to
80[kg] and the starting position is at the equilibrium posi-
tion of the passenger sitting down, so 0.0859[m]. After 2[s]
the passenger stands up and the suspension extends to the
extended position and hits end of stroke. The impact of the
end of stroke is shown by a spike in the acceleration. The
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Figure 5: The acceleration, velocity and position for the
static case and the passenger suddenly standing up.
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Figure 6: The acceleration, velocity and position for a si-
nusoidal movement of the vessel with an amplitude of 2[m]
and a period time f 5[s].

results are shown in Figure 5. That the stroke is higher than
the 0.1359[m] is due to the braking distance.

2.1.2 Results with wave motion

Up till now the vessel was assumed steady, so now the vessel
starts moving on the waves. With an amplitude of 2[m] the
vessel will move a total of 4[m]. With a period time of up
to 6[s] the chair does not hit the end of stroke positions,
which is why Figure 6 shows a period time of 5[s] and the
acceleration shows the impact forces.

2.1.3 Results for steep drop of the vessel

The steep drop is simulated using a cosine and it simulates a
drop of 6[m] within 2[s], and this suddenly stops. This rep-
resents a situation that the vessel drops between the waves
and afterwards it hits the next wave. The drop is gradual,
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Figure 7: The acceleration, velocity and position for a steep
drop of the vessel.
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Figure 8: The acceleration, velocity and position for a si-
nusoidal movement of the vessel with an amplitude of 2[m]
and a period time f 5[s] for the higher spring pretension.

as gravity needs to accelerate the vessel, but when the vessel
hits the next wave it is not a nice sinusoidal shape, but the
position is suddenly at standstill. The spring should soften
the shock. The results in Figure 7 show high accelerations,
which means there are high forces on the passenger.

2.2 Much stronger pretension

In this subsection the spring pretension is much larger than
the weight of the passenger, making sure the chair is at
maximum stroke when the passenger sits down.

Therefore, the pretension is increased from 600N to
1200N.

2.2.1 Results with wave motion

For the results of the sinusoidal wave, see Figure 8, the ac-
celerations for the higher spring pretension are higher than
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Figure 9: The acceleration, velocity and position for a steep
drop of the vessel for the higher pretension.

for the normal spring. This indicates higher forces on the
passenger than for the normal spring pretension. Consider-
ing that the steep drop results in accelerations of orders of
magnitude higher, it is not yet convincing.

2.2.2 Results for steep drop of the vessel

The accelerations for the steep drop are slightly lower than
for the spring with lower pretension, as shown in Figure
9, although the difference is not that large. But it is an
indication that this setup has advantages compared to the
spring adjusted to the passenger’s weight.

3 Progressive spring

The idea behind the progressive spring is that the spring
stiffness increases when it is compressed. This is for instance
done by changing the pitch of the spring helical for some part
of the spring’s length. An example is shown in Figure 10.

Figure 10: An example of a progressive spring.

This means that from a certain spring length Q the spring
stiffness changes from c to c2. The spring force is now not
only dependent on the compression, but also a changing
spring stiffness. Therefore, two equations are required in-
stead of one in the normal operating range of the spring
When the spring is between length Q and extended position
(0.1359[m]):

[

ẍ
ẋ

]

=

[

ẋ1

ẋ2

]

=

[

−m g+d (ż1−x1)+c (z1−x2)+600+c 0.1359
m

ż2

]

(7)

When the spring is between length Q and retracted position:

[

ẋ1

ẋ2

]

=

[

−m g+d (ż1−x1)+c2 (z1−x2)−c Q+600+c 0.1359+c2 Q

m

ż2

]

(8)

The forces at the extended position do not change, as the
spring force is internally blocked to act on the mass:

[

ẋ1

ẋ2

]

=

[

−0.5∗m (x1−ż1)2

0.001 −m g+d (ż1−x1)

m

x1

]

(9)
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For the retracted position the spring force is updated to
the stiffer stiffness:

[

ẋ1

ẋ2

]

=

[

0.5∗m (x1−ż1)2

0.001 +d (ż1−x1)+c2 (z1−x2)−c Q+600+c 0.1359+c2 Q

m

x1

]

(10)

3.1 Spring adjusted to passengers weight

Similar as for the linear spring, first a spring is used that
is dependent on the passenger’s weight, to give a proper
suspension. All parameters are kept the same in comparison
with the linear spring. The extra parameters required for
this simulation are shown in Table 3.

3.1.1 Results with wave motion

The wave motion simulation is the same as done for the
linear spring. The results for the wave motion are shown in
Figure 12. The accelerations, especially around 5[s] in the
simulation, of the progressive spring are higher, indicating
that the impact forces were higher as well. In that sense the
progressive spring is worse than a linear spring.

3.1.2 Results for steep drop of the vessel

The steep drop simulation is similar as done before for the
linear spring. The result of the simulation is shown in Fig-
ure 13. The resulting accelerations and thus forces are the
similar to the linear spring, mainly due to the same velocity
change and hitting the end of stroke position. Increasing
the spring stiffness leads thus to higher accelerations.
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Figure 11: The difference between spring force of a linear
and progressive spring.

Table 3: Used quantities for the progressive spring
Symbol quantity unit

c2 Spring stiffness 8000[N/m]
Q Point of stiffness change 0.06[m]
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Figure 12: The acceleration, velocity and position for a si-
nusoidal movement of the vessel with an amplitude of 2[m]
and a period time f 5[s].
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Figure 13: The acceleration, velocity and position for a steep
drop of the vessel.

3.2 Stronger pretension of the spring

Similar as done for the linear spring, the pretension of
the spring can also be increased to above the passenger’s
weight. This means that the suspension is normally always
extended, unless is has to dampen some shocks by the waves.
The pretension at fully extended stroke is now increased to
1200[N], the same as for the linear spring.

3.2.1 Results with wave motion

The results for the wave function are shown in Figure 14. It
is clearly visible that these accelerations are larger than for
the spring adjusted to the weight, although the accelerations
for the steep drop are much larger.

3.2.2 Results for steep drop of the vessel

The results for the steep drop are shown in Figure 15. This
shows that the maximum accelerations are almost a factor
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Figure 14: The acceleration, velocity and position for a si-
nusoidal movement of the vessel with an amplitude of 2[m]
and a period time f 5[s] with higher spring pretension.
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Figure 15: The acceleration, velocity and position for a steep
drop of the vessel with higher spring pretension.

two lower than the original accelerations, meaning that the
impact (and thus mainly the speed of the impact) is lower.
This means that this type of spring has an advantage when
used in this manner.

3.3 Conclusion

The progressive spring has an advantage over the linear
spring for large impacts (steep drop scenario). It has a draw
back that the accelerations during normal sinusoidal waves
are higher, meaning that it has less comfort.

4 Simple gas spring

The simple gas spring is simply a cylinder filled with gas at
bottom and rod side. The rod side is small compared to the
bottom side, to make the influence of the rod side pressure
on the force of the cylinder rather low. A simple overview

Figure 16: Graphical representation of the simple gas spring
model.

of the system is shown in Figure 16.

The gas volume requires quite some more input values to
make the simulation. The used inputs are shown in Table 4
The pressure at rod side pr0 is calculated using a isotherm
process from the extended position to the x0 position.

From the x0 position the cylinder movement is considered
adiabatic. The specific heat ratio κ changes with pressure
and temperature, as shown in [2] and in Figure 17.

To calculate the cylinder force, first the stroke of the cylin-
der is determined:

xcyl =x2 − z1 (11)

To make sure that the thermodynamic calculation does
not deliver Not a Number (NaN) answers, the maximum
(0.1359[m]) and minimum (0[m]) stroke are forced. The to-

Table 4: Used quantities for the simple gas spring
Symbol quantity unit

Dbore Bore diameter 50[mm]
Drod Rod diameter 40[mm]
Vbottle Bottle bottom volume 0.001[m3]

Vrodbottle Bottle rod volume 0.001[m3]
x0 Starting stroke 0.0859[m]
T0 Ambient temperature 20 + 273.15[K]

prprefill Prefill pressure rod side 1 105[Pa]
retracted cylinder
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Figure 17: Change of the specific heat ratio of air with pres-
sure and temperature.

tal volume is then calculated for rod and bottom side:

Vbottom = Vbottle + xcyl

π

4
D2

bore = Vbottle + xcyl Abore (12)

Vrod = Vrodbottle + (0.1359 − xcyl)
π

4

(

D2
bore − D2

rod

)

(13)

= Vrodbottle + (0.1359 − xcyl) Arod (14)

The new volume is then used to calculate the new pres-
sure and temperature using adiabatic calculation, using the
adapted ideal gas law for pressure and temperature as shown
in [2]. The cylinder force is then calculated as:

Fcyl = pbottom Abore − prod Arod (15)

The differential equation for the case that the suspension
is not at the end of stroke is then:

[

ẍ
ẋ

]

=

[

ẋ1

ẋ2

]

=

[

−m g+d (ż1−x1)+Fcyl

m

x1

]

(16)

When the suspension hits the extended position (x2−z1 >
0.1359[m]), the differential equation is changed to:

[

ẍ
ẋ

]

=

[

ẋ1

ẋ2

]

=

[

−0.5∗m (x1−ż1)2

0.001 −m g+d (ż1−x1)

m

x1

]

(17)

When the suspension hits the retracted position (x2−z1 <
0[m]), the differential equation is changed to:

[

ẍ
ẋ

]

=

[

ẋ1

ẋ2

]

=

[

0.5∗m (x1−ż1)2

0.001 +d (ż1−x1)+Fcyl

m

x1

]

(18)

By using these differential equations, the simulations can
be done as shown below.

4.1 Use it as gas spring

Here the pressure of the gas is set to the weight of the pas-
senger. The pressure at bottom side at x0 is thus dependent
on the mass m:

pb0 = (m g + pr0 Arod)/Abore (19)

This results in a starting pressure pb0 of 4.6[bar].
With the gas pressure at bottom and rod side known, the

cylinder force over the stroke can be determined, as shown
in Figure 18. The stiffness from x0 to extended stroke is
on average 1712 [N/m]. The average stiffness from x0 to
extended stroke is 6440 [N/m]. On average (over the full
stroke) the stiffness is 3451.8 [N/m], which is approximately
equal to the linear spring model.
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Figure 18: The cylinder force over the full stroke, including
the 800[N] at 0.0859[m] stroke.

4.1.1 Results with wave motion

First the wave function is simulated. The result is shown
in Figure 19. The temperature and cylinder force graph are
shown in Figure 35. The peak acceleration is almost twice
as high as for the linear and progressive spring, meaning
that the gas spring is less comfortable than the other two.
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Figure 19: The acceleration, velocity and position for a wave
function of the vessel.

4.1.2 Results for steep drop of the vessel

The results for a steep drop are shown in Figure 20. The
temperature and cylinder force graph are shown in Figure
34. The results are comparable to the simple mechanical
spring, and thereby better than the progressive mechanical
spring.
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Figure 20: The acceleration, velocity and position for a steep
drop of the vessel.

4.2 Set at one pressure independent of pas-

senger weight

The pressure in the bottom side of the cylinder can be in-
creased above the normal weight of the passenger, meaning
that the suspension will normally be at the end of stroke
(extended position). In this case the pressure is increased
to 6.1[bar], which equals the 1200[N], which is again com-
parable with the linear spring.

The overal stiffness is 7579N/m over the full stroke. The
cylinder force with respect to the stroke is shown in Figure
21.
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Figure 21: The cylinder force over the full stroke, including
the 2750[N] at 0.0859[m] stroke.

4.2.1 Results with wave motion

The results for the wave motion are shown in Figure 22. The
accelerations are approximately the same as for the initial
simple gas system, and it is therefore a factor 2 larger than
the linear and progressive mechanical spring with higher
pretension.
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Figure 22: The acceleration, velocity and position for a wave
function of the vessel with higher prefill pressure.
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4.2.2 Results for steep drop of the vessel

The results for the higher prefill pressure for the simple gas
system are shown in Figure 23. The accelerations are similar
or higher than for the linear and progressive spring.
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Figure 23: The acceleration, velocity and position for a steep
drop of the vessel with higher prefill pressure.

4.3 Conclusion

The simple gas spring preset to the passengers weight has
similar results for the steep drop as a mechanical spring.
The sinusoidal wave shows that it is slightly less comfort-
able.

Increasing the pretension by increasing the pressure has
no benefit as seen for the progressive mechanical spring.

5 Direction dependent gas spring

The gas spring only is not directly better than the mechani-
cal spring. In order to limit the negative accelerations at the
extended stroke, the gas volume is now separated: gas can
quickly flow into the extra volume, meaning that the spring
acts properly when the spring is compressed. During ex-
tending the spring , the gas is throttled before it enters the
cylinder. This means that extending is done more slowly.
This has the benefit that the suspension will not hit the ex-
tended stroke with the same speed as before, which should
result in lower negative accelerations.

This is immediately one of the drawbacks: it should limit
the negative accelerations, but especially for the steep drop,
the largest accelerations are in the positive direction due to
hitting the retracted stroke position. It has the disadvantage
of slower extending, meaning that the suspension is longer
retracted and is thus also for a longer period of time not
capable of dampening new larger shocks.

5.1 Calculation method

To make a clear distinction between the in- and outgoing
stroke, the two are shown separately here.

Figure 24: Graphical representation of the adapted gas
spring model.
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Figure 25: Model of the orifice.

5.1.1 Ingoing stroke

The ingoing stroke is defined when the speed of the cylinder
piston is smaller or equal to zero:

x1 − ż1 ≤ 0 (20)

The gas pressure and temperature calculation is similar as
for the simple gas spring. Just to make sure that the sim-
ulation runs on the correct way, the following global values
are reset in this situation to their appropriate values:

M1n
=

p1 Vbottle

Zvalue(p, T ) Rspecific T1
(21)

M3n
=

p3 Abore (x1 − z1)

Zvalue(p, T ) Rspecific T3
(22)

p3 =p1 (23)

During the ingoing stroke, the equations of motion are the
same as seen in Section 4. The equations of motion will be
repeated here for clarity and comparison with the outgoing
stroke. When the suspension is not at the end of stroke, the

9



differential equation is:

[

ẍ
ẋ

]

=

[

ẋ1

ẋ2

]

=

[

−m g+d (ż1−x1)+Fcyl

m

x1

]

(24)

When the suspension hits the extended position (x2−z1 >
0.1359[m]), the differential equation is changed to:

[

ẍ
ẋ

]

=

[

ẋ1

ẋ2

]

=

[

−0.5∗m (x1−ż1)2

0.001 −m g+d (ż1−x1)

m

x1

]

(25)

When the suspension hits the retracted position (x2−z1 <
0[m]), the differential equation is changed to:

[

ẍ
ẋ

]

=

[

ẋ1

ẋ2

]

=

[

0.5∗m (x1−ż1)2

0.001 +d (ż1−x1)+Fcyl

m

x1

]

(26)

5.1.2 Outgoing stroke

For the outgoing stroke (x1 − ż1 > 0), the bottom volume of
the cylinder and the extra volume Vbottle are coupled with
the orifice. This means that the two volumes do not neces-
sarily have the same pressure.

The laws used up till now are all based on a closed
and specific volume without mass transfer over the system
boundaries. For the outgoing stroke, the system needs to be
divided into two volumes and there is a mass flow between
the two volumes. Therefore, it is required to change the
laws used for the simulation.

In order to compensate for the lack of rules, the first law
of thermodynamics is used: The law of conservation of en-
ergy. In this case, where atomic reactions are not considered
within the system, it also means the conservation of mass.

The conservation of mass means that in the total volume
of cylinder and Vbottle the mass does not increase or decrease,
although the mass can flow from one to the other.

From the starting positions p0, T0 and V0 at the bottom
side the total mass can be determined, as shown in [2]:

M(p0, V0, T0) =
p0 V0

Zvalue(p, t) Rn T0
(27)

Table 5: Explanation of the quantities
Symbol quantity unit

A Area before orifice [m2]
A∗ Critical area (sonic flow) [m2]

Aorifice Area of the orifice [m2]
Dorifice Diameter of orifice 1 10−3[m]

k Specific heat ratio [−]
Ma Mach number [−]
p Pressure before orifice [Pa]
p0 Stagnation pressure [Pa]

Rspecific Specific gas constant 268.9[ J
k kg

]

T Temperature before orifice [K]
T0 Stagnation temperature [K]
ρ Density of the gas [kg/m3]
ρ0 Stagnation density [kg/m3]

For each step, the mass flow over the orifice needs to be
calculated. As this is compressible flow, the critical orifice
area needs to be determined in order to determine whether
the flow is considered choked or subsonic flow ([3] page 638).
To calculate the critical area, the mach number at point 1
([3] page 629 and 632) needs to be determined at each point:

Ma =
v

√

k Rspecific T1

=
x1 − ż1

√

k Rspecific T1

(28)

A1

A∗
=

1

Ma

(

1 + 1
2 (k − 1) Ma2

1
2 (k + 1)

)

1
2 (k+1) (k−1)

(29)

A∗ =
A1 Ma

(

1+ 1
2 (k−1) Ma2

1
2 (k+1)

)
1
2 (k+1) (k−1)

(30)

In order to calculate the mass flow, the stagnation point

parameters, depicted with a 0, need to be determined. The
stagnation point is the point at which the fluid velocity be-
comes zero. These can be calculated:

T0 =

(

1 +
k − 1

2
Ma2

)

T (31)

p0 =

(

1 +
1

2
(k − 1) Ma2

)
k

k−1

p (32)

ρ0 =

(

1 +
1

2
(k − 1) Ma2

)
1

k−1

ρ (33)

With a orifice area larger than the critical area (Aorifice >
A∗), the Mach number is smaller than one (< 1) and the
flow is subsonic, and can be calculated ([3] page 640):

ṁ =
A p0

√

Rspecific T0

√

√

√

√

2 k

k − 1

(

p

p0

)2 k
(

1 −

(

p

p0

)

k−1
k

)

(34)
With a orifice area equal or smaller than the critical area

(Aorifice ≤ A∗), the Mach number equal to one (=1) and
the mass flow is at the maximum and becomes ([3] page
639):

ṁ = ṁmax =
0.6847 p0 A∗

√

Rspecific T0

(35)

This means that within the simulation time step dt the
mass entering the cylinder is:

dM =ṁ dt (36)

The change of mass requires thus the dt, which is the rea-
son that the standard variable integrators cannot be used.
Therefore, the constant time step integrator according the
fourth order Ranga-Kutta method is used for this system.

Now that the mass flow is known, the pressure in the
cylinder needs to be determined. To start, the mass of the
gas at the start of the simulation is determined based on the
compressibility factor theory [2]:

Mstart =
pstart Vstart

Zvalue(p, T ) Rspecific Tstart

(37)
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To calculate the resulting pressure and temperature in
the bottom bottle, the density is determined first using the
mass of the previous time step (n-1)1:

ρ1 =
M1n−1

Vbottle

(38)

ρ3 =
M3n−1

Abore (x2 − z1)
(39)

Now that the estimation of the density is done, the esti-
mation of the volume change due to the mass flow can be
determined:

dV1 =
dM

ρ1
(40)

dV3 =
dM

ρ3
(41)

By using the change in volume, the new temperature can
be determined, which is again used to determine the new
pressure.

This means that the temperature and pressure at the new
time step (n) are:

T1n
=T1n−1

(

V1n−1

V1n−1
+ dV

)k−1

(42)

T3n
=T3n−1

(

V3n−1

V3n−1
− dV + Abore (x1 − ż1 dt)

)k−1

(43)

M1n
=M1n−1

− dM (44)

M3n
=M3n−1

+ dM (45)

p1n
=

Zvalue(p, T ) M1n
Rspecific T1n

Vbottle

(46)

p3n
=

Zvalue(p, T ) M3n
Rspecific T3n

Abore (x1 − z1 + (x1 − ż1 dt)
(47)
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Figure 26: The acceleration, velocity and position for a wave
function of the vessel.

1Using the mass of the previous time step results in a small offset,

but as the time steps are small and thus the mass steps are even

smaller, the error will be very small.
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Figure 27: The acceleration, velocity and position for a steep
drop of the vessel.

The rod pressure is determined similarly as for the simple
gas system.

The cylinder force can now be calculated using:

Fcyl = p3 Abore − prod Arod (48)

The equations of motion are the same as seen in Section
4.

[

ẍ
ẋ

]

=

[

ẋ1

ẋ2

]

=

[

−m g+d (ż1−x1)+Fcyl

m

x1

]

(49)

When the suspension hits the extended position (x2−z1 >
0.1359[m]), the differential equation is changed to:

[

ẍ
ẋ

]

=

[

ẋ1

ẋ2

]

=

[

−0.5∗m (x1−ż1)2

0.001 −m g+d (ż1−x1)

m

x1

]

(50)

When the suspension hits the retracted position (x2−z1 <
0[m]), the differential equation is changed to:

[

ẍ
ẋ

]

=

[

ẋ1

ẋ2

]

=

[

0.5∗m (x1−ż1)2

0.001 +d (ż1−x1)+Fcyl

m

x1

]

(51)

5.2 Results for spring adjusted to weight

passenger

5.2.1 Wave motion

First the wave motion is simulated. The results are shown
in Figure 26. The negative accellerations are lower, which
corresponds with a slower speed at which the chair hits the
end of stroke position. This means that the air flow for
extending is throttled, slowing down the motion. The gas
temperature and cylinder force are shown in Figure 38.

5.2.2 Steep drop

The result of the simulation for the steep drop are shown
in Figure 27. The positive accelerations are still quite high.
but the negative accelerations are again lower. Unfortu-
nately, the positive accelerations are larger in this case, as

11
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Figure 28: The acceleration, velocity and position for a wave
function of the vessel with higher prefill pressure.

the largest impact is at the retracted stroke (and the impact
force slowing down the mass is thus in upward direction).
This means that the benefit for the person in the chair is
small.

5.3 Results for prefill pressure independent

of passenger weight

Similar as done previously, the pressure in the cylinder can
be increased to 6,1bar. This means that the chair will start
fully extended.

5.3.1 Wave motion

The results are shown in Figure 28. The accelerations are
smaller compared to Figure 22, meaning it is a more com-
fortable seat.

5.3.2 Steep drop

The results for the steep drop with higher gas spring pres-
sure is shown in Figure 29. It shows almost no negative
accelerations, which is an improvement. The positive accel-
erations are however still the same, which were governing.

5.4 Remove the check valve

From the results displayed above, one might think that re-
moving the check valve, and thus only installing an orifice
between the cylinder and the bottle, would work better, as
the orifice lowers the accelerations.

To show that this is not directly a solution, a simula-
tion is done with only the orifice for a steep drop and the
pressure adjusted to the person’s weight. This simulation
is shown in Figure 30. It is shown that the accelerations
are now still quite high, but slightly lower, for the positive
accelerations (hit end of stroke at bottom side). The neg-
ative accelerations are however much worse, meaning that
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Figure 29: The acceleration, velocity and position for a steep
drop of the vessel with higher prefill pressure.

the total amount of accelerations are higher and this design
is thus less favourable for the passenger.

5.5 Conclusion

The conclusion of this section is that the throttle check valve
is beneficial for the negative accelerations compared to the
simple gas spring. However, the largest accelerations are
in the positive direction and these are still the same as the
simple gas spring.

6 Active constant pressure system

The last idea to be modeled and simulated, is an active
constant pressure system. This system uses an active system
to add gas when the pressure is too low, and removes gas
when the pressure is too high. Goal is to support the person
on the chair as properly as possible.
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Figure 30: The acceleration, velocity and position for a steep
drop of the vessel.
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However, a small difference between added gas and re-
lieved gas is required, to prevent a constant energy usage,
when the gas is added from a compressor while it is im-
mediately relieved through the relief valve. Therefore, an
estimate of 1bar pressure difference is assumed to be be-
tween the compressor and the relief valve. An overview of
the system is shown in Figure 31.

Figure 31: Graphical representation of the adapted gas
spring model.

The calculation looks a lot like the calculation done for
the simple gas spring of chapter 4, with the exception that
the minimum pressure is kept equal to the weight of the
passenger, while the maximum pressure is 1 bar above that
setting2.

To calculate the cylinder force, first the stroke of the cylin-
der is determined:

xcyl =x2 − z1 (52)

To make sure that the thermodynamic calculation does
not deliver Not a Number (NaN) answers, the maximum
(0.1359[m]) and minimum (0[m]) stroke are forced. The to-
tal volume is then calculated for rod and bottom side:

Vbottom = Vbottle + xcyl

π

4
D2

bore = Vbottle + xcyl Abore (53)

Vrod = Vrodbottle + (0.1359 − xcyl)
π

4

(

D2
bore − D2

rod

)

(54)

= Vrodbottle + (0.1359 − xcyl) Arod (55)

The new volume is then used to calculate the new pres-
sure and temperature using adiabatic calculation, using the
adapted ideal gas law for pressure and temperature as shown

21bar is chosen, as the actual pressure is about 4.6bar, and for

larger differences the relief valve would not do much good.

in [2]. The temperature of the gas is in that case set to the
starting temperature T0. The cylinder force is then calcu-
lated as:

Fcyl = pbottom Abore − prod Arod (56)
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Figure 32: The acceleration, velocity and position for a wave
function of the vessel with higher prefill pressure.
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Figure 33: The acceleration, velocity and position for a steep
drop of the vessel.

The differential equation for the case that the suspension
is not at the end of stroke is then:

[

ẍ
ẋ

]

=

[

ẋ1

ẋ2

]

=

[

−m g+d (ż1−x1)+Fcyl

m

x1

]

(57)

When the suspension hits the extended position (x2−z1 >
0.1359[m]), the differential equation is changed to:

[

ẍ
ẋ

]

=

[

ẋ1

ẋ2

]

=

[

−0.5∗m (x1−ż1)2

0.001 −m g+d (ż1−x1)

m

x1

]

(58)
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When the suspension hits the retracted position (x2−z1 <
0[m]), the differential equation is changed to:

[

ẍ
ẋ

]

=

[

ẋ1

ẋ2

]

=

[

0.5∗m (x1−ż1)2

0.001 +d (ż1−x1)+Fcyl

m

x1

]

(59)

6.1 Results for spring adjusted to weight

passenger

The pressure of the gas is set to the weight of the passenger.
The pressure at bottom side at x0 is thus dependent on the
mass m:

pb0 = (m g + pr0 Arod)/Abore (60)

This results in a starting pressure pb0 of 4.6[bar].

6.1.1 Wave motion

First the wave motion is simulated. The results are shown in
Figure 32. The accelerations are lower than for a simple gas
spring, meaning that the seat provides a more comfortable
ride of the passenger. The gas temperature and cylinder
force are shown in Figure 43.

6.1.2 Steep drop

The result of the simulation for the steep drop are shown in
Figure 33. The positive as well as negative accelerations are
much higher than for other systems. This has to do with the
fact that the chair cannot slow down the motion by building
a higher pressure or force, which is possible for the other
designs. This means that although the ride is smoother as
long as the end of stroke position is not reached, it will mean
that as soon as it hits the end of stroke position, it will do
greater damage. And as the design lacks the possibility to
slow down the motion, it will hit the end of stroke position
for smaller waves than the other designs.

7 Conclusion

The active system is not the system to choose, as it lacks
the ability to slow down movement, as it cannot develop a
force to slow down the movement. The other systems have a
trade-off between comfort (sinusoidal movement) and accel-
erations at maximum operational conditions (steep drop).
The progressive mechanical spring with extra pre-tension
seems favorable for large steep drops, while the direction
dependent gas spring adjusted to the passenger’s weight has
more comfort for the passenger.

Important to all simulations is that the large accelera-
tions are due to the end-of-stroke of the suspension. This
means that once the stroke can be enlarged, it has signifi-
cant benefits, as it requires larger movements to reach the
end-of-stroke position. This larger stroke is however not
simulated in this article.

A higher spring stiffness, as for the progressive mechanical
spring, has benefits, as it limits the speed at which the end-
of-stroke position is reached. The better the passenger is

slowed down, the lower the impact and thus the lower the
accelerations and thus forces on the passenger. For the gas
springs, it might also be possible to reduce the gas volume
to create this stiffer spring.

All in all, the design of such a chair should represent the
maximum operational conditions. Enlarging the stroke can-
not be done indefinitely, but it also comes with higher costs
and with a larger space claim. Therefore, the maximum op-
erational conditions for each chair and vessel needs to be
determined to have a cost-effective solution.
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Appendices

A Simple Gas System, adapted to

weight

A.1 Wave motion

The cylinder force and temperature of the gas volumes of
the simple gas system during the wave motion are shown in
Figure 34.
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Figure 34: The temperature and cylinder force for a wave
function of the vessel.

A.2 Steep drop

The cylinder force and temperature of the gas volumes of
the simple gas system during the steep drop are shown in
Figure 35.
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Figure 35: The temperature and cylinder force for a steep
drop of the vessel.

B Simple Gas System, independent

of passenger weight

B.1 Wave motion

The cylinder force and temperature of the gas volumes of
the simple gas system during the wave motion are shown in
Figure 36.
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Figure 36: The temperature and cylinder force for a wave
function of the vessel.

B.2 Steep drop

The cylinder force and temperature of the gas volumes of
the simple gas system during the steep drop are shown in
Figure 37.
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Figure 37: The temperature and cylinder force for a steep
drop of the vessel.
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C Direction dependent gas system,

adapted to weight

C.1 Wave motion

The cylinder force and temperature of the gas volumes of
the simple gas system during the wave motion are shown in
Figure 38.
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Figure 38: The temperature and cylinder force for a wave
function of the vessel.

C.2 Steep drop

The cylinder force and temperature of the gas volumes of
the simple gas system during the steep drop are shown in
Figure 39.

0 1 2 3 4 5 6

Time [s]

-50

0

50

T
em

pe
ra

tu
re

 [°
C

]

Bottom temperature
Rod temperature

0 1 2 3 4 5 6

Time [s]

0

500

1000

C
yl

in
de

r 
fo

rc
e 

[N
]

Figure 39: The temperature and cylinder force for a steep
drop of the vessel.

C.3 Steep drop, removed check valve

In Figure 40 the cylinder force and temperature of the gas
are shown for the steep drop simulation with only an orifice,

thus where the check valve is removed.
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Figure 40: The temperature and cylinder force for a steep
drop of the vessel.
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D Direction dependent gas system,

independent of passenger weight

D.1 Wave motion

The cylinder force and temperature of the gas volumes of
the simple gas system during the wave motion are shown in
Figure 41.

0 1 2 3 4 5 6

Time [s]

19.8

19.9

20

T
em

pe
ra

tu
re

 [°
C

]

Bottom temperature
Rod temperature

0 1 2 3 4 5 6

Time [s]

1088

1090

1092

C
yl

in
de

r 
fo

rc
e 

[N
]

Figure 41: The temperature and cylinder force for a wave
function of the vessel.

D.2 Steep drop

The cylinder force and temperature of the gas volumes of
the simple gas system during the steep drop are shown in
Figure 42.
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Figure 42: The temperature and cylinder force for a steep
drop of the vessel.

E Active constant pressure system

E.1 Wave motion

The cylinder force and temperature of the gas volumes of
the simple gas system during the wave motion are shown in
Figure 43.
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Figure 43: The temperature and cylinder force for a wave
function of the vessel.

E.2 Steep drop

The cylinder force and temperature of the gas volumes of
the simple gas system during the steep drop are shown in
Figure 44.
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Figure 44: The temperature and cylinder force for a steep
drop of the vessel.
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