
A model for active squeeze

ir. J.G. Gruijters

November 17, 2013

1 Introduction

This short report describes a simple model for
the active squeeze problem. Although the author
has little to do with the problem, so no details
are known to him, it is possible to come up with
a simple model.

A pipelay tower has a tensioner, to keep the
pipe from falling to the seabed. The tensioner
has separate tracks: One needs to position the
pipe, the other one squeezes the pipe onto the
position track. During active squeeze the active
squeeze cylinders are controlled to keep a con-
stant force on the pipe, while the position track
keeps the pipe in its current position. In some
situations the position cylinders are adapted and
the squeeze cylinders must follow to keep the con-
stant force on the pipe, which is the case for the
simulation.

First the model and underlaying laws of
physics are described, then how it is simulated
and the results will be shown at the end of this
article.

2 The Model

The model used during this simulation is based
on both mechanics (second order differential
equation) and the law of conservation of mass
(first order differential equation). A schematic
representation of this simple model is given in fig-
ure 1. For simplification, the three active squeeze
cylinders are modeled as one, which is reasonable
for this application, because only the hydraulics
are taken into account. The external force is the
force generated by the positioning track cylin-
ders.
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Figure 1: The cylinder with an external force

2.1 The mechanical model

The displacement of the active squeeze cylinder
is simulated using Newton’s law:∑

F = mẍ (1)

The piston and rod of the cylinder, together with
the pipe and the piston and rod of the position
cylinders, are taken as the mass which is accel-
erated. The forces acting on the squeeze cylin-
der are the force delivered by the position track
cylinders and by the pressure at the rod-side of
the squeeze cylinders, which is constant during
measurements, so this pressure is not taken into
account, but are part of the force on the cylinder.
Furthermore damping is included. This leads to
a differential equation as shown in equation

Fin − dẋ− pA = mẍ (2)

The force on the cylinder is also dependent on
the displacement, due to the compression/decom-
pression of the position cylinder. This is modeled
as a spring, using ∆p =

∫
dp
dt dt. By using the con-

servation of mass and bulk modulus this pressure
is dependent on position. First the conservation
of mass is rewritten.

ṁin =
d

dt
(ρV ) + ˙mout (3)

0 = ρ
dV

dt
+ V

dρ

dt
+ 0 (4)

dV

dt
+

V

ρ

dρ

dt
= 0 (5)
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Now the bulk modulus is used:

β = −V
dP

dV
= −ρ

dp

dρ
(6)

dρ

ρ
=

dp

dβ
(7)

Using this in the conservation of mass gives:

dV

dt
+

V

β

dp

dt
= 0 (8)

dp

dt
= − β

V

dV

dt
(9)

dp

dt
= − β

V
Aẋ (10)

(11)

Integrating this result gives a change in pressure
caused by the movement of the pistons, acting as
a spring on the mechanical system.

Fin = Fx −
∫

dp

dt
dtA (12)

Fin = Fx − β

V
Ax (13)

Now the mechanical system can be described as
follows:

(Fx − β

V
Ax)− dẋ− pA = mẍ (14)

2.2 The conservation of mass

As already shown in the previous subsection, the
conservation of mass is used to calculate the pres-
sure rise due to piston motion. In the previous
chapter, especially from equation 3 up to equa-
tion 10, the conservation of mass is used when
there no flow in or out of the cylinder, which is
the case when the position cylinder is not moved.
For the active squeeze cylinder, which are con-
trolled and there is flow in and out of the cylin-
der, the flow needs to be included. This flow is
used to control the cylinder. This flow is used in
this model for the massflow in, but it can be neg-
ative. The massflow out of the cylinder is zero in
this case.

ṁin =
d

dt
(ρV ) + ˙mout (15)

Qin =
dV

dt
+

V

ρ

dρ

dt
(16)

dp

dt
=

β

V
(Qin −Aẋ) (17)

With these results and the results of section
2.1, the system can be simulated.

3 Simulation

For a simulation, the two differential equations
need to be combined in three first order differen-
tial equations.

3.1 Fin becomes constant

In this simulation, the force on the cylinder be-
comes constant, because the position cylinder is
moved from t = 5[s] till t = 12[s]. This constant
force replaces Fx − β

V Ax2) and is 1901837[N ].
This drop in force is equal to the pressure drops
in the position cylinders during a measurement
(bottom side pressure increases 15[bar], the rod
side pressure increases 25[bar], meaning that the
total force the position cylinder delivers drops ap-
proximately 21913[N ]).

x =

x1

x2

x3

 =

ẋx
p

 (18)

dx

dt
=

 (Fx− β
V A2x2)−dx1−x3A

m
x1

β
V (Qin −Ax1)

 (19)

The flow in the cylinder is controlled by a pro-
portional valve:

Qin = k

(
Fsetpoint − Fin

A
− x3

)
(20)

For the other parameters the following is used:
A 0.0855

[
m2

]
d 500000

[
kg
s

]
Fx 1923750 [N ]

k 2.19∗10−8

60

[
m5

sN

]
m 5000 [kg]
β 1.43 ∗ 109

[
N
m2

]
V 0.27

[
m3

]
Fsetpoint 3847500 [N ]
The result is shown in figure 2.
The pressure drop is about 3 [bar]. From

t = 5[s] till t = 12[s] the pressure is constant.
All the flow to the cylinder is used to move the
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Figure 2: Simulation results for case 1

cylinder even further, because the pressure is de-
pendent on the external force. When the force
from the bottom side pressure becomes larger as
the external force, the cylinder starts to move.

3.2 Fin drops, but is not constant

In this section the simulation still uses the
− β

V Ax2 term when Fx drops, so the squeeze
cylinder can compress the bottom side of the po-
sition cylinder. The simulation time is now ex-
tended to 60[s], the drop in force Fx is now from
t = 5[s]. In figure 3 the result is shown.
In figure 3 the higher setpoint is seen, which is

due to the fact that the controller wants to keep
a constant force on the cylinder, so Fsetpoint =
Fin + pA. The force Fin drops, so the pressure p
must rise to match the setpoint force. In reality
the pressure at the position cylinder will become
larger again, stopping the motion. The initial
pressure drop is now 1.5[bar].
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Figure 3: Simulation results for case 2


